
Introduction 

Fibrosis is an excessive deposition of extracellular matrix (ECM) 
components, particularly fibrillar type I and III collagen [1,2]. Fi-
brosis is mainly driven by profibrogenic and proinflammatory cy-
tokines, including the transforming growth factor beta (TGF-β) 
superfamily, tumor necrosis factor alpha (TNF-α), various inter-
leukins, oxidative stress, and inflammation [3,4]. As a result, fibro-
sis can lead to failure of vital organs, including the lung, liver, 
heart, kidney, skin, and eye [5]. Pulmonary fibrosis is the final 

outcome of various parenchymal lung disorders, known as inter-
stitial lung disease (ILD) [6]. One of the most common subtypes 
of ILD is idiopathic pulmonary fibrosis (IPF), which is a chronic, 
progressive, and generally fatal parenchymal lung disorder of un-
known cause, with an approximate median survival of 2 to 5 years 
from diagnosis [7]. The clinical characteristics of IPF are hetero-
geneous and unpredictable, mainly including chronic cough, exer-
tional dyspnea, declining lung function, and poor quality of life 
[8]. Epidemiological studies indicate that IPF is an age-related 
disease, and the majority of cases are diagnosed in patients over 
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Fibrosis is characterized by excessive accumulation of extracellular matrix components. The fi-
brotic process ultimately leads to organ dysfunction and failure in chronic inflammatory and 
metabolic diseases such as pulmonary fibrosis, advanced kidney disease, and liver cirrhosis. Idio-
pathic pulmonary fibrosis (IPF) is a common form of progressive and chronic interstitial lung dis-
ease of unknown etiology. Pathophysiologically, the parenchyma of the lung alveoli, interstitium, 
and capillary endothelium becomes scarred and stiff, which makes breathing difficult because 
the lungs have to work harder to transfer oxygen and carbon dioxide between the alveolar space 
and bloodstream. The transforming growth factor beta (TGF-β) signaling pathway plays an im-
portant role in the pathogenesis of pulmonary fibrosis and scarring of the lung tissue. Recent 
clinical trials focused on the development of pharmacological agents that either directly or indi-
rectly target kinases for the treatment of IPF. Therefore, to develop therapeutic targets for pul-
monary fibrosis, it is essential to understand the key factors involved in the pathogenesis of pul-
monary fibrosis and the underlying signaling pathway. The objective of this review is to discuss 
the role of kinase signaling cascades in the regulation of either TGF-β-dependent or other signal-
ing pathways, including Rho-associated coiled-coil kinase, c-jun N-terminal kinase, extracellular 
signal-regulated kinase 5, and p90 ribosomal S6 kinase pathways, and potential therapeutic tar-
gets in IPF. 
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60 years of age [9].  
The pathogenic mechanism in IPF is not clearly defined, but 

the disease is characterized by epithelial injury and activation, epi-
thelial-mesenchymal transition (EMT), sustained fibroblast acti-
vation, and excessive ECM accumulation, which result in progres-
sive and irrevocable distortion of the histological lung structure 
[10,11]. Previous studies have revealed the complex and vital role 
of TGF-β/Smad signaling in lung fibrosis [12-15]. Enhanced 
TGF-β1 signaling with excessive ECM accumulation has been re-
ported in experimental models of pulmonary fibrosis as well as in 
human lung fibrotic tissue [16,17]. The inhibition of TGF-β by 
neutralizing anti-TGF-β antibody, decorin, RNA interference, or 
antisense oligonucleotides alleviates fibrosis [18-21]. Moreover, 
in a mouse model of bleomycin-induced pulmonary fibrosis, 
Smad3 deficiency attenuated pulmonary fibrosis [22]. TGF-β sig-
naling can initiate both canonical Smad-dependent and Smad-in-
dependent signaling pathways [23]. In Smad-independent path-
ways, TGF-β activates the phosphoinositide 3-kinase (PI3K)/Akt 
pathway and mitogen-activated protein kinases (MAPKs) such as 
extracellular signal-regulated kinase (ERK) 1/2, p38, and c-jun 
N-terminal kinase (JNK) 1/2/3 [24]. 

It has long been assumed that acute and chronic alveolitis lead 
to a fibrogenic response and play a critical role in the disease pro-
gression of IPF [25]. There are two different mechanisms in-
volved in the pathogenesis of IPF. One of these is the ‘inflamma-
tory pathway,’ which represents the major etiological pathway for 
IPF, associated with a marked collapse in the integrity of alveolar 
epithelial cells and subsequent fibrotic stage [25]. The other is the 
‘epithelial/fibroblastic pathway,’ revealed by IPF [26]. These 
pathological changes, along with the disruption of the epithelial 
basement membrane enhance the migration of fibroblasts/myofi-
broblasts into the alveolar spaces and their subsequent deposition 
into the intra-alveolar ECM [26,27]. Many studies have shown 
that injured/activated alveolar epithelial cells in lungs from pa-
tients with IPF produce a variety of growth factors and pro-fibrot-
ic cytokines [27,28]. 

Clinical treatment for pulmonary fibrosis 

Pirfenidone and nintedanib have been recently approved for the 
treatment of IPF [29-31]. Pirfenidone is a small molecule that in-
hibits inflammatory responses and the progression of fibrosis in 
experimental models and patients with IPF [32-34]. It downregu-
lates the proliferation of fibroblasts and TGF-β1-induced collagen 
synthesis and reduces the production of the inflammatory cyto-
kine TNF-α and interleukin-1β both in vitro and in vivo [35]. In a 
phase 3 study comparing pirfenidone with placebo in patients 

with IPF, pirfenidone treatment for 52 weeks significantly pro-
longed progression-free survival, compared with placebo [36]. In 
addition, with pirfenidone, there was a relative reduction of 47.9% 
in the proportion of patients who had a decline in predicted 
forced vital capacity or who died [36]. Pirfenidone is frequently 
associated with gastrointestinal adverse effects such as dyspepsia, 
nausea, and gastritis [37]. 

Nintedanib is a small-molecule tyrosine kinase inhibitor target-
ing fibroblast growth factor receptor (FGFR) 1–3, vascular endo-
thelial growth factor receptor (VEGFR) 1–3, and platelet-derived 
growth factor receptor (PDGFR) αβ, which are potentially in-
volved in the progression of pulmonary fibrosis [38]. Nintedanib 
inhibits FGFR and PDGFR autophosphorylation and subsequent 
activation of downstream signaling via the Ras/Raf/MAPK, 
ERK1/2, and PI3K/Akt pathways [38]. Vascular endothelial 
growth factor (VEGF) stimulates angiogenesis through VEGFR 
and also binds to PDGFR in fibroblasts, subsequently stimulating 
cellular proliferation [38]. Nintedanib reduces migration, prolifer-
ation, and survival of fibroblasts, and ultimately attenuates angio-
genesis in the lung [39]. In addition, administration of nintedanib 
attenuated the histopathological features of pulmonary fibrosis 
and expression of profibrogenic genes in experimental models of 
lung fibrosis [40]. In the two replicate phase 3 trials, nintedanib 
was shown to slow disease progression in patients with IPF by de-
creasing the annual rate of decline in forced vital capacity [41]. 

Other recommendations for the pharmacological treatment of 
pulmonary fibrosis are warfarin, N-acetyl cysteine, imatinib, and 
endothelin receptor antagonists [9]. However, most clinical trials 
did not show significant differences between placebo and treat-
ment effects in patients with IPF [9]. Therefore, there is still a 
need to develop new therapeutic targets and agents to inhibit the 
progression of pulmonary fibrosis and improve mortality rates. 

Clinical trials with kinase inhibitors for 
idiopathic pulmonary fibrosis 

1. Receptor kinases 
In recent years, growth factors and receptor kinases have attracted 
attention as potential drug targets for pulmonary fibrosis. Several 
therapies targeting receptor kinases, including growth factor re-
ceptors, are currently in clinical trials for IPF (Table 1). Aberrantly 
activated lung epithelial cells are the primary source of TGF-β, fi-
broblast growth factor (FGF)-2, PDGF, connective tissue growth 
factor (CTGF), and endothelin-1, key factors in the development 
of IPF. Based on this evidence, clinical trials of nintedanib target-
ing multiple growth factor receptors could be successful. Addi-
tionally, several clinical trials of cytokine receptors, including 

https://doi.org/10.12701/yujm.2020.00458270

Kim S et al.  Kinase inhibitor for idiopathic pulmonary fibrosis



TNF-α, interferon-γ, and interleukin-13, have been conducted 
with no significant impact in patients with IPF (NCT 02277145, 
NCT00532233, and NCT00075998). 

TGF-β mediates tissue fibrosis via recruitment and activation of 
monocytes and fibroblasts, and production of ECM through acti-
vation of serine/threonine kinase receptors [42,43]. In addition, 
TGF-β1 regulates the proliferation, differentiation, apoptosis, ad-
hesion and migration, immunity, and even embryonic develop-
ment, which ultimately contribute to fibrogenesis [44]. TGF-β 
has been shown to drive fibroblast-to-myofibroblast differentia-
tion and directly promote pulmonary fibrosis in a mouse model 
of IPF [45]. Although TGF-β1 causes tissue fibrosis mainly by 
stimulating its downstream Smad signal transduction pathway, it 
is also known to activate Smad-independent signaling pathways, 
including MAPKs, focal adhesion kinase, and PI3K-Akt cascades 
in the pathogenesis of pulmonary fibrosis [46-48]. Both pharma-
cological and genetic inhibition of PI3K reduced pulmonary fi-
brosis in experimental rodent models, whereas overexpression of 
PI3K was observed in lung tissues from patients with IPF. A phase 
1 clinical trial with a pharmacological inhibitor of PI3K is being 
conducted in healthy male and female subjects (NCT03502902). 

Drug development has been challenged by the problem of 
identifying selective pharmacological inhibitors of the TGF-β1 
signaling pathway that function by inactivating either the ligand or 
receptor of TGF-β1. Since TGF-β family members are secreted in 
the form of inactive complexes with latency-associated peptide 
(LAP), which binds to integrin αVβ6, inhibition of the binding 
between αVβ6 and the LAP region of TGF-β1 has been consid-
ered as a potential strategy for drug development in IPF [49]. A 
couple of phase 2 clinical trials of an immunoglobulin G mono-
clonal antibody and a small-molecule inhibitor of integrin αVβ6 
are being conducted in patients with IPF (NCT01371305 and 

NCT04396756). In addition, an inhalation formulation of a nu-
cleic acid medicine that selectively suppresses the expression of 
TGF-β1 has been tested in a phase 1 clinical trial in patients with 
IPF (NCT03727802). In contrast to those of TGF-β ligand inhi-
bition, there are no active clinical trials of direct inhibitors of 
TGF-β1 receptor in patients with IPF. There is, however, an ongo-
ing phase 2 clinical trial of a galectin-3 inhibitor that indirectly 
suppresses TGF-β signaling via reduced cell surface expression of 
TGF-β receptors (NCT03832946) [50]. 

CTGF, also known as cellular communication network factor 2, 
is a multifunctional growth factor that has been implicated in cell 
migration, proliferation, differentiation, and angiogenesis [51-54]. 
Since CTGF is an immediate early gene induced by TGF-β, 
PDGF, FGF-2, VEGF, and hypoxia, CTGF could regulate ECM 
deposition, tissue remodeling, and neovascularization, leading to 
the development of tissue fibrosis [55-58]. CTGF binds to integ-
rin receptor α5β1 and induces the transactivation of FGFR2, 
PDGFR, and TGF-β receptor [59]. The fact that CTGF was ele-
vated in lung fibrosis model and also in patients with IPF suggests 
its potential role in the treatment of IPF [60]. The neutralizing 
monoclonal antibody for CTGF has been shown to reduce lung 
fibrosis in experimental models [61,62]. A phase 3 clinical trial of 
a monoclonal antibody for CTGF is progressing in patients with 
IPF (NCT03955146).  

2. Intracellular kinases  
Intracellular kinases are attractive targets for the treatment of IPF. 
There are a couple of clinical trials of inhibitors of the Rho-associ-
ated coiled-coil kinase (ROCK) and JNK (Table 1). The regula-
tion of the actin cytoskeleton is a major feature of chronic fibrotic 
diseases implicating the wound healing process against tissue inju-
ry [63,64]. The ROCK family of serine/threonine kinases are key 

Table 1. Featured clinical trials targeting kinases in patients with idiopathic pulmonary fibrosis

Target molecule Compound (type) Mode of action NCT ID (phase)
Multiple receptor kinases Nintedaniba) (small-molecule) Inhibit receptor kinases including PDGFR, FGFR, and VEGFR Completed
TGF-β BG00011 (IgG antibody) Inhibit the activation of latent TGF-β via targeting integrin αVβ6 NCT01371305 (2)
TGF-β PLN-74809 (small-molecule) Inhibit the activation of latent TGF-β via targeting αVβ1 and αVβ6 NCT04396756 (2)
TGF-β TRK-250 (nucleic acid) Interfere the expression of TGF-β mRNA NCT03727802 (1)
TGF-β receptor TD139 (small-molecule) Suppress the expression of TGFR via targeting galectin-3 NCT03832946 (2)
CTGF Pamrevlumab (IgG antibody) Interfere CTGF bioavailability and subsequent receptor signaling NCT03955146 (3)
ROCK KD025 (small-molecule) Inhibit ROCK NCT02688647 (2)
JNK CC-90001 (small-molecule) Inhibit JNK NCT03142191 (2)

NCT ID, national clinical trial identifier number from ClinicalTrials.gov; PDGFR, platelet-derived growth factor receptor; FGFR, fibroblast growth factor 
receptor; VEGFR, vascular endothelial growth factor receptor; TGF-β, transforming growth factor beta; mRNA, messenger RNA; TGFR, transforming 
growth factor receptor; CTGF, connective tissue growth factor; IgG, immunoglobulin G; ROCK, Rho-associated coiled-coil protein kinase; JNK, c-jun 
N-terminal kinase.
a)U.S. Food and Drug Administration approved.
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regulators of profibrotic processes and reasonable targets for a 
new therapeutic strategy for pulmonary fibrosis [65]. ROCK acti-
vation has been observed both in patients with IPF and in a 
mouse model of lung fibrosis, and pharmacological inhibition of 
ROCK protected mice from experimental lung fibrosis [66]. A 
phase 2 clinical trial of a pharmacological inhibitor of ROCK is 
ongoing in patients with IPF (NCT02688647) [67]. 

It has been suggested that JNK activation in multiple cell types 
involved in lung fibrosis is positively correlated with the degree of 
fibrosis [68]. JNK1-deficient mice showed improved lung func-
tion in experimental models of lung fibrosis [69,70]. In a house 
dust mite model of lung fibrosis, a pharmacological JNK inhibitor 
decreased ECM accumulation and fibrosis [71,72]. A phase 2 
clinical trial with a small-molecule inhibitor of JNK is being con-
ducted in patients with IPF (NCT03142191). 

ERK5 and p90 ribosomal S6 kinase 
(p90RSK) in the fibrotic response 

A multitude of profibrotic mediators, including TGF-β, CTGF, 
PDGF, and FGF, and their signaling cascades, play an important 
role in the pathogenesis of fibrotic lung diseases. Collectively 
these signs of progress imply that kinase can be a good therapeutic 
target for pulmonary fibrosis. It has been shown that MAPK ki-

nase (MEK) 1/2-ERK1/2-p90RSK inhibition reduces PDGF-
AA-induced cellular migration [73]. FGF-2, a potent mitogen for 
fibroblasts, induces the synthesis of collagen in lung fibroblasts 
and myofibroblasts. Inhibition of ERK1/2 suppresses FGF-in-
duced DNA synthesis, phosphorylation of ERK1/2, and p90RSK 
[74]. VEGF also causes rapid activation of Raf-1, MAPK, 
p90RSK in cardiac myocytes, and fibroblasts [75]. In addition, 
ERK5 modulates PDGF-induced proliferation and migration of 
hepatic stellate cells [76]. Many studies have revealed that ERK5 
activation is induced by growth factors such as epidermal growth 
factor (EGF), FGF-2, and VEGF [77]. Thus, it is interesting that 
ERK5 is a common combined target for the treatment of pulmo-
nary fibrosis through the regulation of growth factor signaling 
(Fig. 1A). 

ERK5 is an atypical member of the MAPK family and plays a 
critical role in hypertrophic cardiac remodeling via regulating fi-
brotic genes and ECM expression [78]. ERK5 is also involved in 
the enhancement of cell viability and ECM accumulation in 
chronic glomerulonephritis [79]. Since ERK5 could be activated 
by various growth factors affecting pulmonary fibrosis, it has been 
investigated whether ERK5 regulates TGF-β1-induced profibrot-
ic responses and the pathogenesis of pulmonary fibrosis. Kim et 
al. [80] reported that pharmacological inhibition of MEK5/
ERK5 with BIX02189 and depletion of ERK5 using small inter-
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Fig. 1. Roles of extracellular signal-regulated kinase 5 (ERK5) and p90 ribosomal S6 kinase (p90RSK) in pulmonary fibrosis. (A) ERK5 
may be activated by multiple receptors involved in pulmonary fibrosis. (B) Transforming growth factor beta (TGF-β) activates ERK5 and 
p90RSK in lung alveolar epithelial cells and lung fibroblasts. Activation of ERK5 or p90RSK regulates Smad3 transcriptional activity 
via acetylation modification. The pharmacological inhibitors of ERK5 or p90RSK reduce TGF-β-induced fibrogenic gene expression and 
experimental lung fibrosis. TGFR, transforming growth factor receptor; FGFR, fibroblast growth factor receptor; PDGFR, platelet-derived 
growth factor receptor; EGFR, epidermal growth factor receptor; VEGFR, vascular endothelial growth factor receptor; P, phosphorylation; A, 
acetylation; HAT, histone acetyltransferase.
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fering RNA against ERK5 inhibited TGF-β1-induced ECM pro-
duction and Smad3 transcriptional activity, but not Smad3 phos-
phorylation and nuclear translocation. Notably, it has been shown 
that ERK5 plays a vital role in TGF-β1-induced fibrogenic signal-
ing via enhancing Smad3 acetylation [80]. Moreover, the pharma-
cological inhibition of ERK5 ameliorated lung fibrosis and im-
proved survival rate in a mouse model of bleomycin-induced lung 
fibrosis [80]. This suggests that ERK5 may provide a potential 
therapeutic strategy to prevent the progression of pulmonary fi-
brosis (Fig. 1B). 

p90RSK is a family of serine/threonine kinases that is activated 
by the extracellular signal-regulated kinase signaling pathway. 
p90RSK is involved in numerous signal transduction and regula-
tion of diverse cellular processes, including cell proliferation, 
growth, apoptosis, and transformation [81]. A recent study pro-
posed that p90RSK is involved in the development and progres-
sion of liver fibrosis and hepatocellular injury in chronically dam-
aged livers [82]. In addition, it has been reported that pharmaco-
logical inhibition of p90RSK using kaempferol inhibits TGF-β1-
induced EMT and migration of A549 lung cancer cells [83]. A re-
cent report showed that pharmacological inhibition of p90RSK 
by fluoromethyl ketone (FMK) or genetic inhibition of p90RSK 
significantly inhibited TGF-β1-induced Smad3 transcriptional ac-
tivity, but not Smad3 phosphorylation and nuclear translocation 
[84]. In an experimental mouse model of bleomycin-induced 
lung fibrosis, p90RSK inhibitor FMK reduced pulmonary fibro-
sis, which suggests that it may be a novel therapeutic target for the 
treatment of lung fibrosis (Fig. 1B). 

Conclusion 

Pulmonary fibrosis is a dreadful condition that demands urgent 
attention. Although TGF-β1 is known to play a critical role in the 
pathogenesis of pulmonary fibrosis, clinical trials of therapies tar-
geting TGF-β are progressing through repeated failures. Accord-
ing to recent data, kinase inhibitors have been identified as reliable 
targets for developing therapeutic drugs to treat IPF through reg-
ulation of not only TGF-β signaling but also multiple kinase cas-
cades. A couple of receptor kinases are progressing for clinical tri-
als in patients with IPF. In addition to clinical trials, recent preclin-
ical studies with an experimental mouse model of bleomycin-in-
duced lung fibrosis in our group have suggested that pharmaco-
logical inhibition of ERK5 or p90RSK could be a potential target 
of pharmacological treatment of pulmonary fibrosis through inhi-
bition of TGF-β-induced Smad3 transcriptional activation. Fur-
ther intensive studies using selective kinase inhibitors are needed 
to develop therapeutic agents that might slow the progression of 

the disease and improve the prognosis of IPF. 
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